- 1. 一个新的安然特征练习
- 5. 可视化新特征
- 7. 去除特征
- 9. 单变量特征选择
- 10. TfIdf 向量器中的特征选择
- 11. 偏差、方差和特征数量
- 13. 肉眼过拟合
- 14. 带有特征数量的平衡误差
- 15. 正则化
- 16. 套索回归
- 23. 过拟合决策树
- 24. 特征数量和过拟合
1. 一个新的安然特征练习
新的特征选取过程如下,自觉-》编码-》可视化-》重复:
- use my human intuition
- code up the new feature
- visualize
- repeat
下面是一个练习的编码,确定某个人的邮件接收的邮件中,是否是来自嫌疑人,if from_emails:
部分是添加的代码:
#!/usr/bin/python
###
### in poiFlagEmail() below, write code that returns a boolean
### indicating if a given email is from a POI
###
import sys
import reader
import poi_emails
def getToFromStrings(f):
'''
The imported reader.py file contains functions that we've created to help
parse e-mails from the corpus. .getAddresses() reads in the opening lines
of an e-mail to find the To: From: and CC: strings, while the
.parseAddresses() line takes each string and extracts the e-mail addresses
as a list.
'''
f.seek(0)
to_string, from_string, cc_string = reader.getAddresses(f)
to_emails = reader.parseAddresses( to_string )
from_emails = reader.parseAddresses( from_string )
cc_emails = reader.parseAddresses( cc_string )
return to_emails, from_emails, cc_emails
### POI flag an email
def poiFlagEmail(f):
""" given an email file f,
return a trio of booleans for whether that email is
to, from, or cc'ing a poi """
to_emails, from_emails, cc_emails = getToFromStrings(f)
### poi_emails.poiEmails() returns a list of all POIs' email addresses.
poi_email_list = poi_emails.poiEmails()
to_poi = False
from_poi = False
cc_poi = False
### to_poi and cc_poi are boolean variables which flag whether the email
### under inspection is addressed to a POI, or if a POI is in cc,
### respectively. You don't have to change this code at all.
### There can be many "to" emails, but only one "from", so the
### "to" processing needs to be a little more complicated
if to_emails:
ctr = 0
while not to_poi and ctr < len(to_emails):
if to_emails[ctr] in poi_email_list:
to_poi = True
ctr += 1
if cc_emails:
ctr = 0
while not cc_poi and ctr < len(cc_emails):
if cc_emails[ctr] in poi_email_list:
cc_poi = True
ctr += 1
#################################
######## your code below ########
### set from_poi to True if #####
### the email is from a POI #####
#################################
if from_emails:
ctr = 0
while not from_poi and ctr < len(from_emails):
if from_emails[ctr] in poi_email_list:
from_poi = True
ctr += 1
#################################
return to_poi, from_poi, cc_poi
- 其中部分的结果如下:
'Billy': {'from_poi_to_this_person': 0}, 'mike.mcconnell@enron.com': {'from_poi_to_this_person': 1}, 'Coal&EmissionsQBRMcClellan': {'from_poi_to_this_person': 0}, 'kent.densley@enron.com': {'from_poi_to_this_person': 0}, 'brad.alford@enron.com': {'from_poi_to_this_person': 0}, 'amy.spoede@enron.com': {'from_poi_to_this_person': 1},
- 添加新特征后的散点图,x轴是接收到嫌疑人的邮件数量,y轴是发送给嫌疑人的邮件数量,红色表示此人是嫌疑人:
从上图中蓝色点与红色点混合在一起,看不出明显的趋势,所以还需要进一步编码。
5. 可视化新特征
上面增加的新特征没有明显的趋势,进一步分析,或许并不是需要某个人发送接收嫌疑人邮件的绝对数量,而是在自己总邮件中的比例,代码如下:
studentCode.py
import pickle
from get_data import getData
def computeFraction( poi_messages, all_messages ):
""" given a number messages to/from POI (numerator)
and number of all messages to/from a person (denominator),
return the fraction of messages to/from that person
that are from/to a POI
"""
### you fill in this code, so that it returns either
### the fraction of all messages to this person that come from POIs
### or
### the fraction of all messages from this person that are sent to POIs
### the same code can be used to compute either quantity
### beware of "NaN" when there is no known email address (and so
### no filled email features), and integer division!
### in case of poi_messages or all_messages having "NaN" value, return 0.
fraction = 0.
if poi_messages == "NaN" or all_messages == "NaN":
return 0
fraction = float(poi_messages)/all_messages
return fraction
data_dict = getData()
submit_dict = {}
for name in data_dict:
data_point = data_dict[name]
print
from_poi_to_this_person = data_point["from_poi_to_this_person"]
to_messages = data_point["to_messages"]
fraction_from_poi = computeFraction( from_poi_to_this_person, to_messages )
print fraction_from_poi
data_point["fraction_from_poi"] = fraction_from_poi
from_this_person_to_poi = data_point["from_this_person_to_poi"]
from_messages = data_point["from_messages"]
fraction_to_poi = computeFraction( from_this_person_to_poi, from_messages )
print fraction_to_poi
submit_dict[name]={"from_poi_to_this_person":fraction_from_poi,
"from_this_person_to_poi":fraction_to_poi}
data_point["fraction_to_poi"] = fraction_to_poi
#####################
def submitDict():
return submit_dict
get_data.py
def getData():
data = {}
data["METTS MARK"]={'salary': 365788, 'to_messages': 807, 'deferral_payments': 'NaN', 'total_payments': 1061827, 'loan_advances': 'NaN', 'bonus': 600000, 'email_address': 'mark.metts@enron.com', 'restricted_stock_deferred': 'NaN', 'deferred_income': 'NaN', 'total_stock_value': 585062, 'expenses': 94299, 'from_poi_to_this_person': 38, 'exercised_stock_options': 'NaN', 'from_messages': 29, 'other': 1740, 'from_this_person_to_poi': 1, 'poi': False, 'long_term_incentive': 'NaN', 'shared_receipt_with_poi': 702, 'restricted_stock': 585062, 'director_fees': 'NaN'}
data["BAXTER JOHN C"]={'salary': 267102, 'to_messages': 'NaN', 'deferral_payments': 1295738, 'total_payments': 5634343, 'loan_advances': 'NaN', 'bonus': 1200000, 'email_address': 'NaN', 'restricted_stock_deferred': 'NaN', 'deferred_income': -1386055, 'total_stock_value': 10623258, 'expenses': 11200, 'from_poi_to_this_person': 'NaN', 'exercised_stock_options': 6680544, 'from_messages': 'NaN', 'other': 2660303, 'from_this_person_to_poi': 'NaN', 'poi': False, 'long_term_incentive': 1586055, 'shared_receipt_with_poi': 'NaN', 'restricted_stock': 3942714, 'director_fees': 'NaN'}
#...省略上面大部分数据
return data
-
输出结果如下:
{'METTS MARK': {'from_poi_to_this_person': 0.04708798017348203, 'from_this_person_to_poi': 0.034482758620689655}, 'BAXTER JOHN C': {'from_poi_to_this_person': 0, 'from_this_person_to_poi': 0},...
-
可视化:
可以看到红色点集中在黄色部分的上方,则可以推断,如果发送给嫌疑人的邮件比率不到20%,则很可能不是嫌疑人:
7. 去除特征
有时为了处理方便和准确,还需要去除一些特征,理由如下:
- It’s noisy
- It causes overfitting
- It is strongly related(highly correlated) with a feature that’s already present
- Additional features slow down trainging/testing process
Features 不是 information,如果某个特征不能带来信息,基于上面的原因,这个特征就应该被删除。
9. 单变量特征选择
在 sklearn 中自动选择特征有多种辅助方法。多数方法都属于单变量特征选择的范畴,即独立对待每个特征并询问其在分类或回归中的能力。
sklearn 中有两大单变量特征选择工具:SelectPercentile
和 SelectKBest
。 两者之间的区别从名字就可以看出:SelectPercentile
选择最强大的 X% 特征(X 是参数),而 SelectKBest
选择 K 个最强大的特征(K 是参数)。
由于数据维度太高,特征约简显然要用到文本学习。 实际上,在最初的几个迷你项目中, Sara/Chris 邮件分类的问题上进行了特征选择;可以在 tools/email_preprocess.py
的代码中看到它。
10. TfIdf 向量器中的特征选择
vectorizer = TfidfVectorizer(sublinear_tf=True,max_df=0.5,
stop_words="english")
features_train_transformed = vectorizer.fit_transform(features_train)
features_test_transformed = vectorizer.transform(features_test)
# 只选取10%的特征
selector = SelectPercentile(f_classif,percentile=10)
selector.fit(features_train_transformed,labels_train)
features_train_transformed = selector.transform(features_train_transformed).toarray()
features_test_transformed = selector.transform(features_test_transformed).toarray()
11. 偏差、方差和特征数量
high bias(高偏差) | high variance(高方差) | |
---|---|---|
pays little attention to data,oversimplified | pays too much attention to data(does not generelize well),overfits | |
low r**2, large SSE | much higher error on test set than on training set |
- 如果选取特征过简,会导致高偏差,最终模型质量很差
- 如果选取特征过多,会导致高方差,而使得模型无法处理新数据(对样本数据的预测会很好)
关于偏差与方差,参考知乎的回答-偏差方差的区别
- 偏差:描述的是预测值(估计值)的期望与真实值之间的差距。偏差越大,越偏离真实数据,如下图第二行所示。
- 方差:描述的是预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散,如下图右列所示。
13. 肉眼过拟合
上面的曲线,就是因为选取了过多的特征,造成了过拟合,最终会使得新数据在该模型无法正确预测,图中的红色斜线是正常的拟合曲线。
14. 带有特征数量的平衡误差
如下是选取的特征数量,与模型质量之间的分布曲线,找到中间的最佳质量时的特征的过程,叫做正则化。
15. 正则化
考虑了两个因素SSE和由特征产生的惩罚误差,如果特征增多那么SSE即最小平方差会变小,但是由特征产生的惩罚误差变大,这是一个相互影响的过程。
16. 套索回归
- 示例,
fit(X, y[, check_input]) Fit model with coordinate descent.
:
>>> from sklearn import linear_model
>>> clf = linear_model.Lasso(alpha=0.1)
>>> clf.fit([[0,0],[1,1],[2,2]],[0,1,2])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)
# 回归模型的斜率(回归系数)
>>> print clf.coef_
[ 0.85 0. ]
# 回归模型的截距
>>> print clf.intercept_
0.15
# 预测
>>> print clf.predict([2,4])
[ 1.85]
因为是一个回归模型,所以输入的参数为feature和label,才能进行训练。
23. 过拟合决策树
决策树作为传统算法非常容易过拟合,获得过拟合决策树最简单的一种方式就是使用小型训练集和大量特征。
如果决策树被过拟合,那么:
- 测试集的准确率会很低
- 训练集的准确率会很高
24. 特征数量和过拟合
过拟合算法的一种传统方式是使用大量特征和少量训练数据。在示例代码feature_selection/find_signature.py
中选取了150个训练数据:
后续练习的代码如下:
#!/usr/bin/python
import pickle
import numpy
numpy.random.seed(42)
### The words (features) and authors (labels), already largely processed.
### These files should have been created from the previous (Lesson 10)
### mini-project.
words_file = "../text_learning/your_word_data.pkl"
authors_file = "../text_learning/your_email_authors.pkl"
word_data = pickle.load( open(words_file, "r"))
authors = pickle.load( open(authors_file, "r") )
### test_size is the percentage of events assigned to the test set (the
### remainder go into training)
### feature matrices changed to dense representations for compatibility with
### classifier functions in versions 0.15.2 and earlier
from sklearn import cross_validation
features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(word_data, authors, test_size=0.1, random_state=42)
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')
features_train = vectorizer.fit_transform(features_train)
features_test = vectorizer.transform(features_test).toarray()
### a classic way to overfit is to use a small number
### of data points and a large number of features;
### train on only 150 events to put ourselves in this regime
features_train = features_train[:150].toarray()
labels_train = labels_train[:150]
### your code goes here
# 25. 练习:特征数量
print "features_train length:",len(features_train)
# 27. 使用 TfIdf 获得最重要的单词
# 获取特征数量
vec = vectorizer.get_feature_names()
print "features length:",len(vec)
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf = clf.fit(features_train, labels_train)
print "feature_importances_ length:",len(clf.feature_importances_)
# 27. 识别最强大特征
# 27. 使用 TfIdf 获得最重要的单词
for i in range(len(clf.feature_importances_)):
if clf.feature_importances_[i] <> 0:
print " ",clf.feature_importances_[i],"--",vec[i],"--",i
pred = clf.predict(features_test)
# 26. 练习:过拟合决策树的准确率
from sklearn.metrics import accuracy_score
acc = accuracy_score(pred, labels_test)
print "the accuracy_score:",acc
练习25-28
的结果如下:
features_train length: 150
features length: 37874
feature_importances_ length: 37874
0.0263157894737 -- bowen -- 13180
0.0749500333111 -- mtaylornsf -- 26872
0.764705882353 -- sshacklensf -- 33623
0.134028294862 -- street -- 33963
the accuracy_score: 0.957337883959
练习29-31
的结果如下:
另外,通过上面练习27
的代码,识别出重要度最高
的特征值(单词),将这些单词在text_learning/vectorize_text.py
中删除,与sara
等单词一样,参考Uda-DataAnalysis-41-机器学习-文本学习 - 19. 清除“签名文字”部分,删除两次,得到练习29
练习30
练习31
的结果。